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Recently a reduced formulation of tangent dynamics for computing the Lyapunov spectrum of a Hamiltonian
system has been developed, using its symplectic strupRaeovi, Phys. Rev. LetB2, 3424(1999]. In this
paper, we make a detailed numerical comparison of this formulation with a standard algorithm, by applying
both to some typical Hamiltonian systems with two and three degrees of freedom. For the latter, we cast the
reduced dynamics in a form convenient for computations, and capable of generalization to a higher number of
degrees of freedom. The numerical values of the positive Lyapunov exponents coincide in most cases and the
convergence rates are also comparable. However, the CPU time required for computation is invariably higher
for the reduced formulation, making it less efficient than the standard algorithm.

PACS numbes): 05.45—-a, 02.20.Qs

. INTRODUCTION and also an appropriate form f@ whenN=3. This can be
extended in principle even to cases while 3. In Sec. I,

A dynamical system of dimensiomhasn Lyapunov ex- we compare this algorithm with the standard one for compu-
ponents andh principal directions or eigenvectors, corre- tation of Lyapunov spectra, for some typical two- and three-
sponding to a set of nearby trajector[d3. One of the stan- dimensional systems. We conclude the paper with a few re-
dard and popular methods to compute the Lyapunownarks. Throughout our paper, we follow the conventions and
spectrum of a dynamical system involves a Gram-Schmidhotations of Ref[5] as far as possible.
reorthonormalizatonfGSR of the “tangent vectors”[2].

Another method, based on th@R decomposition of the Il. REDUCED TANGENT DYNAMICS

tangent magwhere Q is an orthogonal matrix an® is an

upper triangular matrixhas been studied by several authors ~Consider a classical system Nfdegrees of freedom de-
[3]. It utilizes representations of orthogonal matrices appliedscribed by the canonical coordinates and moment@; ,i
to the tangent map, and does not require the GSR procedure.1,2, . . .N, and the Hamiltonian functioki(q; ,p; ,t). If &
Though it involves a minimum number of equations, detailedgstands for the R-dimensional vector d, p), Hamilton’s
computations of Lyapunov spectra reveal that t&®  equations can be compactly written in a matrix form as
method is less efficient than the standard method; however )

both methods yield essentially the same speetia E=TVH(EY. 1)

Hamiltonian systems are special in the sense that the
equations of motion of such systems have a symplectic struddere J is a 2N-dimensional matrix, which is written in terms
ture. This results in the remarkable property that theof NXN blocks as
Lyapunov spectrum is invariant with respect to change of
sign. Clearly, with symplectic symmetry, a knowledge of the [0
positive Lyapunov exponents is sufficient to determine the J= —1 ol
full spectrum. A modification of the usual@R"” method,
incorporating the symplectic structure of Hamiltonian dy-  The starting point for the computation of Lyapunov expo-
namics and christened “reduced tangent dynamics,” hasents is the tangent map corresponding to {3y
been recently proposed by Partdd]. For Hamiltonians
with one and two degrees of freedom, the method gives re- SE=GOE, (3)
liable, convergent results. However the differential equations
corresponding to the reduced tangent dynamics are highlyhere
involved and nonlinear and the complexity increases with the
number of degrees of freedom. Hence, there is a need to G=T VNV H(E (4)
compare the efficiency and accuracy of this method with that
of the standard algorithm. This is the aim of the presenis the Jacobian matrix. The solution to E8) can be for-
paper. mally written as

The reduced tangent dynamics algorithm would be com-
putationally unviable even fdd=3 (N being the number of SE()=T[&(t),t]6&(0), (5)
degrees of freedomwithout a proper parametrization gf.

In Sec. Il, we present the salient features of the algorithmwhereT is the tangent map whose evolution equation is eas-
ily seen to be given by

@

*Email address: tphysmu@imsc.ernet.in T=GT. (6)
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Oseledec’s theorelii] ensures that lim, ..log(77) /2 exists; ~ thogonal matrix. In the standard method one hadl)@
the eigenvalues of this matrix are thé&l2yapunov expo- €quations for determining the full Lyapunov spectrum. These
nents of the system. Because of the symplectic structure gire the N copies of N tangent map equations in E@). In
the Hamilton’s equations in Eql), T'is a symplectic matrix ~all the methods, one has to further add tti¢ @quations for
satisfying the condition the trajectory itself, to what has been listed before.

For Hamiltonians of the fornt (p,q) =p%2+ V(q,t), the

TIT=J. 7) right-hand side in Eq(12) takes on a simple form. One can
show that for (,j=1,... N),

This would imply that the Lyapunov spectrum is invariant

with respect to change of sida]. (0GQ);i =2(Q,DQR)ii , (13
The QR method applied to Hamiltonian systertsalled
the “QSD” method in Ref[5]) proceeds as follows. We set (LR)ij= _Z(QID'QR)” ,i>],
7= 0S8, whereS is symplectic andD is both orthogonal and
symplectic.Q can be chosen such tHa®, 7]=0 and has the (L)ii =2(QrDQR)ii , (14
structure
and
(e @ . _
=l _q, ol ® (L) =2(QrDQryj, i #].
whereQr andQ, areNx N matrices and)=Qr+i0Q, is a Here, theN-dimensional matriXD is defined by
unitary matrix.S has the structure
y REAAAY
D=—"1—"-. (15)
S P © 2
0 S Any N-dimensional unitary matrix can be expressed as a

product of a phase factor and an $Y(matrix. ForN=2,
the unitary 2x2 matrix Q can be conveniently parametrized

by the exponential form exp#l)exp(yo-n) where n
=(sinfcos¢,sinfsin ¢,cose) is a unit vector andw,,6,
oo ~ e and ¢ are real anglef5]. Then, the reduced tangent dynam-
S§T1-L=9QGQ, QO=L, 10 s in Eq. (12) reduces to coupled equations for the time
evolution of the two positive Lyapunov exponents and the
four angles.

For N= 3, we use the fact that an arbitrary SU(3) matrix

whereS; is upper triangularS, is lower triangular, ands,
=5, . Substituting the decompositiai= QS in Eq. (6), we
find

where L is an antisymmetric matrix with the block structure

L L
L= R ! ) (1D U can be written in the following completely disentangled
-Li Lr form [6]
nge .LR is. antisy_mmetric,Ll is symmetric, andL=Lg U= el 3hagiaghag~iaahog =1 Mag~ivhag v Asgiaphogiazhs.
+iL, is anti-Hermitian. (16)

It can be shown that the Lyapunov exponextsre equal
to A;/t in the limitt—c, whereA;=In(S;). Because of the where\; are the following Gellmann matrices that are trace-
symplectic structure of, A;=In(S;;), Ajrn=—A;, withi less and Hermitian:
=1,... N. The first equation in Eq(10) can be disas-
sembled into two parts: its diagonal elements describe the 0 0
time evolution ofA; in terms of (QGQ),;, whereas the rest A= 1 0
provide algebraic expressions foLgr, in terms of 0 0
(QG@)U ,i#] (apart from an inessential differential equa-
tion for P). Using the block structure of and £, the equa- 1 0 O
tion can be written aQQ'=L. Therefore, the reduced tan-
gent dynamics of a Hamiltonian systgthat has symplectic '
symmetry is given by the equations

(17)

Ai=(QGQ);, 1=i=N, QQ'=L. (12

These constitutdl>+ N equations, withN equations for the
Lyapunov exponents arfd? equations folN? angles param-
etrizing theN-dimensional unitary matrix Q. This should be
compared with the B?+N equations for a general system
when theQR method is used. In the latter case, there axe 2 Q=e""U. (19
equations for Lyapunov exponents and(2N—1)/2 equa-

tions for the angles parametrizing aNalimensional or- The explicit matrix elements d are given by

ThenQ can be written as
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TABLE I. Comparison of the two methods for some Hamil-
tonian systems wittN=2 and 3. The values given in parentheses
correspond to the standard method.

. ’ r_ _ _ _
Qu=¢'(@str' ~as= 7= a"Acosa, cosa) cosy

+elle=y ~agty—a=Bging, sinal,

L, System and Positive Lyapunov
Qu=e'" %7 %777« Flcosa, sina, cosv integration Initial spectrum and
e as_aé_y,_a_ﬁ)sinaz cosal, time (T) condition CPU time(t)
Coupled gq,=0.8 0.1820(0.1738
Q3= —ie (et v atBeosa, sinw, quartic oscr. 0,=0.5 0.0001( 0.0002
(N=2) p1=1.0
Qu=¢(®s Y *a3=v=a=Blsin g, cosa) cosv (T=10°) p2=1.3 t=2410(856)
. Partovi gq,=0.0
—ella= v tasty=a=Bloga, sinay, Hamiltonian q,=0.0 0.311 40(0.319 80
f=0 p,=0.0 0.000 04(0.000 00
Q,p=ei(®3~ Y a3+ ~a=Bigin g, sinar} cosy (N=2) p2=12
, T=8x10 E=1.00 t=22895(12 333)
+el(astr=az=v' ~a=Floosa, cosay, Partovi 9,=0.0
, Hamiltonian g,=0.0 0.1731(0.1182
Qu3=—ie (=~ Y " Alsina, sinv, f=05 0,=0.0 0.0061(0.003)
oy, (N=2) P2=12
Qgi=—ie'(®w 7' " e+ 2B cosa) siny, T=10 t=39 360(28 109)
0,=2.4
Q= —ie e~V T 2B)5ing! siny, q=1.4 0.6582(0.6469
Yang-Mills g;=0.4 0.2012(0.1959
Q=€ '(“"?Pcosy. (19 system p,=0.4 0.0006(0.0002
. . . (N=3) p,=1.4
The matriceQg and Q,, which are the real ano_l imagi- t_gy 10 Ds=2.4 t=36791(3607)
nary parts ofQ, can be found from these expressions. The E—10.202
right-hand sidei of E)hef redl(ched_ targ;;;)d{fgmicza%l)mtions G=1.0
in Eq. (12) can then be found usin , , an . '
N%v(v fr)om Eq.(18), we get ’ . 4.=0.5 0-390940.3839
Yang-Mills g3=0.25 0.11890.1150
O0QT= —ial+UUT, (20  system p=1.2 0.000 180.000 12
(N=3) p,=0.6
sinceU is unitary. UUT is the Maurer-Carton form for the T=10° pPs=0.3 t=20471(1936)
SU(3) group and its explicit form can be derived starting E=1.1091

from Eq. (16) and using the transformation properties\of

under the SU(3) rotations generated by them. It can be writ-
) g y tangent dynamics in Eq$12)—(15), and using the represen-

ten as
tation for Q given by Eqs.(16)—(18).
. 8 For N>3 also, a completely disentangled form @fcan
UUT=iZ bi\;, (21 be used in principle, though the evolution equations for the
i=1

Lyapunov exponents and the angles become more and more

whereb; are functions of the angleg, s, as,y,v,y', a3, complicated with increasiny.

and «, and their derivatives(linear in the latter,

N1,A2,Na,\s, and\g are given in Eq(16) and IIl. COMPARISON OF THE REDUCED TANGENT

FORMULATION WITH THE STANDARD ALGORITHM

0 0 —i 000 In this section we compare in detail the Lyapunov spectra
As=|0 0 0], N\e=[0 O 1}, computed using the reduced tangent dynamics approach and
i 0 0 01 0 the standard method. For this purpose, we work with the
following Hamiltonian systems witiN=2 or 3.
00 O (1) Two-dimensional coupled quartic oscillata¥ € 2):
A={0 0 —if. (22 2 p2
o i o H="0 2 gt i+ acia?, @3

The evolution equations for the nine angles are then dewhere a is a parameter. The system is known to be inte-
rived from the equatio®@Q'=L. Thus we have obtained the grable for «=0,2, and 6. We have performed numerical
coupled equations for the time evolution of the three positivecomputations forw=6 and 8.

Lyapunov exponents and the nine angles, from the reduced (2) Partovi Hamiltonian N=2):
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TABLE Il. Comparison of convergence of the maximal Lyapunov exponent for the Partovi Hamiltonian
with f=0.0, corresponding to three initial conditions.

Initial conditions used for both the methods

q;=0.10 p;=0.00 q,=0.20 p;=1.00 q,=0.40 p;=2.00
Time q,=0.60 p,=0.41 g,=0.20 p,=0.25 g,=1.00 p,=0.40
Standard Reduced Standard Reduced Standard Reduced
method dynamics method dynamics method dynamics
55 000 0.2286() 0.2473§) 0.2895() 0.2852f) 0.2515§) 0.2587¢)
60 000 0.22311) 0.2460§) 0.2903f) 0.2840f) 0.2524¢) 0.2594¢)
65 000 0.2256() 0.2465() 0.2911f) 0.2851f) 0.2529¢) 0.2586()
70000 0.2112() 0.2467§) 0.2917§) 0.2846() 0.2511¢) 0.2586()
75000 0.2092) 0.2480¢) 0.2918¢) 0.2853() 0.2522f) 0.2573f)
80000 0.213%) 0.2501§) 0.2923f) 0.2855(/) 0.2523f) 0.2558()
85000 0.2122%) 0.2507§) 0.2921§) 0.2868(/) 0.2482§) 0.2569(/)
90 000 0.2063) 0.2479§) 0.2929§/) 0.2876() 0.2458() 0.2546()
95 000 0.2057%) 0.2428() 0.2933) 0.2860§/) 0.2468(/) 0.2538(/)
100 000 0.2076() 0.2442¢) 0.2928¢) 0.2866() 0.2436() 0.2518()
CPU time
(ins) 1065.28 1748.0 1140.34 1837.17 2058.11 3648.30
pi pg (91— 05)2 y This is the Hamiltonian obtained upon reducing the Yang-
H=—+————-—+4(q;+0;) +fq,cost, Mills gauge field theoryof fundamental importance in high-

2 2 2

energy physics[7] to a dynamical system, by considering
spatially homogeneous fields and a simple ansatz for the
Yang-Mills gauge field§8]. It has been extensively exam-

(24)

wheref represents the strength of the external coupling. Wened in the literature for studying chaos in gauge theories.

have considered both=0 andf=0.5 as in Ref[5].
(3) Yang-Mills System N=3):

2

2 2 2024+ 0202+ a2q>
H:&+&+&+(Q1Q2 0243 Q3Q1)_

2 2 2 2

For all the systems, we have used a variable step-size
Runge-Kutta routine for integration with an error tolerance
e~10"8. All the computations were performed on a DEC
Alpha based workstation running OpenVMS. The time of
integration ranged fromiT=50000 to T=10° depending

25
@9 upon the convergence of the Lyapunov exponents. We also

TABLE Ill. Comparison of convergence of the maximal Lyapunov exponent for the Partovi Hamiltonian
with f=0.5, corresponding to three initial conditions.

Initial conditions used for both the methods

q,=0.10 p,=0.00 q:=0.20 p;=1.00 g,=0.40 p.=2.00
Time g,=0.60 p,=0.41 q,=0.20 p,=0.25 g,=1.00 p,=0.40
Standard Reduced Standard Reduced Standard Reduced
method dynamics method dynamics method dynamics
165 000 0.2090() 0.1725f) 0.1861f) 0.2252f) 0.1462¢) 0.1808f)
180 000 0.2081y) 0.17136) 0.1922f) 0.2262f) 0.1525f) 0.1770§)
195 000 0.2056() 0.1742¢) 0.1975f) 0.2251f) 0.14906) 0.1748¢)
210000 0.205%() 0.17896) 0.2019¢) 0.2223f) 0.15076) 0.1780f)
225000 0.2031) 0.1847§) 0.2026() 0.2224§) 0.15696) 0.1760§)
240000 0.2023() 0.1876() 0.2028() 0.2225f) 0.1630f) 0.1685()
255000 0.2027%() 0.1887() 0.2060¢) 0.2230¢) 0.1686() 0.1680()
270000 0.2028() 0.1883f) 0.2063f) 0.2232f) 0.1730¢f) 0.1702()
285000 0.2032() 0.1912f) 0.2069§) 0.2242f) 0.1770§) 0.1741f)
300000 0.1993() 0.1912f) 0.2047§) 0.2256() 0.1764§) 0.1772f)
CPU time
(ins) 6151.84 11 225.61 5813.22 9896.64 6005.35 124417
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TABLE IV. Comparison of convergence of the maximal Lyapunov exponent in the Yang-Mills system
corresponding to three initial conditions.

Initial conditions used for both the methods

0,=0.50 p;=0.50 g,=0.90 p;=0.30 0,=1.20 p;=1.40
Time q,=0.40 p,=0.40 q,=0.60 p,=0.60 q,=0.34 p,=0.34
03=0.20 p3;=0.20 03=0.30 p3;=0.90 03=0.64 p3;=0.64

Standard Reduced Standard Reduced Standard Reduced
method dynamics method dynamics method dynamics
6000 0.28721) 0.27906) 0.3601f) 0.37430) 0.4320() 0.44060)
10000 0.2798() 0.2721f) 0.3533f) 0.3681f) 0.4269() 0.44696)
14 000 0.2752() 0.2715§) 0.3577¢) 0.3681¢) 0.4336() 0.444660)
18 000 0.2729() 0.2708¢) 0.3607¢) 0.3688¢) 0.4369¢) 0.44370)
22000 0.2755() 0.2612¢) 0.3637¢) 0.3636§) 0.4370§) 0.4373¢)
26 000 0.2766¢) 0.2653¢) 0.3617¢) 0.3633¢) 0.4379¢) 0.4204¢)
30000 0.2734) 0.2592() 0.3545() 0.3634() 0.4294() 0.4236()
34000 0.2730() 0.2586() 0.3584() 0.3653() 0.4263f) 0.4242()
38000 0.2726) 0.2604() 0.3590() 0.3635() 0.4199¢) 0.4222()
42 000 0.273%) 0.2622() 0.3608() 0.3634f) 0.4215() 0.4185()
46 000 0.2716() 0.2646() 0.3594() 0.3404() 0.4195() 0.4209()
50 000 0.2661y) 0.2659¢) 0.3612¢) 0.3442¢) 0.4168¢) 0.4217¢)
CPU time
(ins) 602.33 10 354.09 731.44 40478.47 1068.23 20205.23

noted the CPU time taken for each case for both algorithmgable. The Partovi Hamiltonian has negative terms in it. This
This is the actual time taken by the CPU to accomplish deads to a larger phase space and a greater possibility for the
specific procesgindependent of the other processes runningoropogation of errors. It is perhaps due to this that the maxi-
in the system The details of the comparison of the positive mal Lyapunov exponent obtained by the two methods, con-
Lyapunov spectra computed using the two methods are sunsiderably differ in one caséefer to the third example in
marized in Table |. The two methods yield essentially theTable. ). With our data it is not possible to say which
same Lyapunov spectra. We will comment on the differencenethod is more reliable. However the CPU time is higher by
in one case, later. a factor of 1.5 to 2 on an average with the reduced formula-

We make a detailed comparison between the convergendmn for this system witiN=2. In Fig. 1, we give the maxi-
properties of the Lyapunov exponents computed using thenal Lyapunov exponent computed using the two methods as
two methods by taking up five initial conditions each corre-a function of time, corresponding to a typical initial condi-
sponding tof=0.0 andf=0.5 for the Partovi systemN  tion, and forf=0.5.
=2) and 10 initial conditions for the Yang-Mills system  The convergence of the Lyapunov exponent in the Yang-
(N=3). The results for the maximal Lyapunov exponentMills system (N=3) seems to be much faster. The maximal
corresponding to three initial conditions for each of these aré.yapunov exponent computed using the standard method
displayed in Tables. II-1V. Our criterion of the convergence
of the Lyapunov exponent is that the Lyapunov function var- 035 . . . . .
ies within 5% for a “sufficiently long interval of time.” The
latter will be clear from the context. This is the reason for the
fact that the time of integration depends upon the system ant
even on the parameters and is indicated in the tables.

The lettery(n) in the parentheses to the right of the maxi-
mal Lyapunov exponent indicates that the value of the expo-
nent at that time of integration differs by le@sore than 5%
of the “converged Lyapunov exponent.” The latter is taken

onent
<o
(=]
L B
(
1

Maximal Lyapunov exp
s =
= @
T
1 1

to be the average value of the exponent betweed0 000 005 -
and 50000 for the Yang-Mills system, between 80 000 . . . . .

and 100 000 for the Partovi system witk- 0.0, and between % 50000 100000 150000 200000 250000 300000
t=240000 and 300 000 for the Partovi system with0.5. tmet

The displayed results are representative and the convergencer|G. 1. Plot of the maximal Lyapunov exponent for the Partovi
properties of other exponents and other initial conditions are4amiltonian with f=0.5 and the initial conditions};=0.1, g,
no different. =0.6, p;=0.0, andp,=0.41. The lines with and without the “x”

In most cases, both the values of the exponents and thearks correspond to the standard and the reduced tangent dynamics
convergence rates obtained by the two methods are compalgorithms, respectively.
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N=3. The average CPU time corresponding to the reduced

formulation is about 15-40 times the CPU time correspond-

ing to the standard method. In Fig. 2, we give the maximal

1 Lyapunov exponent as a function of time computed using the

two methods, corresponding to a typical initial condition of

the Yang-Mills system.

1 We have subjected the new algorithm to other tests. For

instance, for the Yang-Mills system, the trajectories corre-

sponding to the initial conditions|;=q,=qz and p;=p,

. =p; are regular and all the Lyapunov exponents are ex-
. . . . . . . . . pected to be zero. Similarly the coupled quartic oscillator

%0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 system is integrable whew=6. The computed values of all

timet the Lyapunov exponents using reduced tangent dynamics are
FIG. 2. Plot of the maximal Lyapunov exponent for the Yang- indeed zero in these cases.

Mills system with E=0.3192 and the initial conditiong;=0.6, The reduced tangent dynamics approach does not require

q,=0.4, q;=0.2, p;=0.6, p,=0.4, andp;=0.2. The lines with  renormalization and reorthogonalization as in the standard

and without the “x” marks correspond to the standard and themethod. It also uses a lesser number of equations as it incor-

reduced tangent dynamics algorithms, respectively. porates theQR method and also the symplectic structure of
Hamiltonian dynamics. However, the equations for the tan-

gent flow are highly nonlinear and involved in this formula-
ign. The degree of complexity only increases withand
is is what makes it less efficient.

I
w
v

{

Maximal Lyapunov exponent
o 1)
I = I3 N
p— W (] W
T T T T

°
R
T

converges to within 5% after=t8000 for all the 10 initial
conditions we have considered, whereas this is so for 7 cas
with the reduced formulation. The values of the exponent
computed using the two methods are more or less the same. ACKNOWLEDGMENT
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