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Lyapunov spectra of Hamiltonian systems using reduced tangent dynamics
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~Received 14 December 1999; revised manuscript received 17 May 2000!

Recently a reduced formulation of tangent dynamics for computing the Lyapunov spectrum of a Hamiltonian
system has been developed, using its symplectic structure@Partovi, Phys. Rev. Lett.82, 3424~1999!#. In this
paper, we make a detailed numerical comparison of this formulation with a standard algorithm, by applying
both to some typical Hamiltonian systems with two and three degrees of freedom. For the latter, we cast the
reduced dynamics in a form convenient for computations, and capable of generalization to a higher number of
degrees of freedom. The numerical values of the positive Lyapunov exponents coincide in most cases and the
convergence rates are also comparable. However, the CPU time required for computation is invariably higher
for the reduced formulation, making it less efficient than the standard algorithm.

PACS number~s!: 05.45.2a, 02.20.Qs
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I. INTRODUCTION

A dynamical system of dimensionn hasn Lyapunov ex-
ponents andn principal directions or eigenvectors, corr
sponding to a set of nearby trajectories@1#. One of the stan-
dard and popular methods to compute the Lyapun
spectrum of a dynamical system involves a Gram-Schm
reorthonormalizaton~GSR! of the ‘‘tangent vectors’’@2#.
Another method, based on theQR decomposition of the
tangent map~whereQ is an orthogonal matrix andR is an
upper triangular matrix! has been studied by several autho
@3#. It utilizes representations of orthogonal matrices appl
to the tangent map, and does not require the GSR proced
Though it involves a minimum number of equations, detai
computations of Lyapunov spectra reveal that theQR
method is less efficient than the standard method; howe
both methods yield essentially the same spectra@4#.

Hamiltonian systems are special in the sense that
equations of motion of such systems have a symplectic st
ture. This results in the remarkable property that
Lyapunov spectrum is invariant with respect to change
sign. Clearly, with symplectic symmetry, a knowledge of t
positive Lyapunov exponents is sufficient to determine
full spectrum. A modification of the usual ‘‘QR’’ method,
incorporating the symplectic structure of Hamiltonian d
namics and christened ‘‘reduced tangent dynamics,’’
been recently proposed by Partovi@5#. For Hamiltonians
with one and two degrees of freedom, the method gives
liable, convergent results. However the differential equati
corresponding to the reduced tangent dynamics are hi
involved and nonlinear and the complexity increases with
number of degrees of freedom. Hence, there is a nee
compare the efficiency and accuracy of this method with t
of the standard algorithm. This is the aim of the pres
paper.

The reduced tangent dynamics algorithm would be co
putationally unviable even forN53 (N being the number of
degrees of freedom!, without a proper parametrization ofQ.
In Sec. II, we present the salient features of the algorit
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and also an appropriate form forQ whenN53. This can be
extended in principle even to cases whereN.3. In Sec. III,
we compare this algorithm with the standard one for com
tation of Lyapunov spectra, for some typical two- and thre
dimensional systems. We conclude the paper with a few
marks. Throughout our paper, we follow the conventions a
notations of Ref.@5# as far as possible.

II. REDUCED TANGENT DYNAMICS

Consider a classical system ofN degrees of freedom de
scribed by the canonical coordinates and momentaqi ,pi ,i
51,2, . . .N, and the Hamiltonian functionH(qi ,pi ,t). If j
stands for the 2N-dimensional vector (q, p), Hamilton’s
equations can be compactly written in a matrix form as

j̇5J “jH~j,t !. ~1!

HereJ is a 2N-dimensional matrix, which is written in term
of N3N blocks as

J5F 0 I

2I 0G . ~2!

The starting point for the computation of Lyapunov exp
nents is the tangent map corresponding to Eq.~1!:

d j̇5Gdj, ~3!

where

G5J “j“jH~j,t ! ~4!

is the Jacobian matrix. The solution to Eq.~3! can be for-
mally written as

dj~ t!5T †j~ t !,t‡dj~0!, ~5!

whereT is the tangent map whose evolution equation is e
ily seen to be given by

Ṫ5GT. ~6!
4850 ©2000 The American Physical Society
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Oseledec’s theorem@1# ensures that limt→`log(T̃T)1/2t exists;
the eigenvalues of this matrix are the 2N Lyapunov expo-
nents of the system. Because of the symplectic structur
the Hamilton’s equations in Eq.~1!, T is a symplectic matrix
satisfying the condition

TJ T̃5J. ~7!

This would imply that the Lyapunov spectrum is invaria
with respect to change of sign@1#.

The QR method applied to Hamiltonian systems~called
the ‘‘QSD’’ method in Ref.@5#! proceeds as follows. We se
T5Q̃S, whereS is symplectic andQ is both orthogonal and
symplectic.Q can be chosen such that@Q,J#50 and has the
structure

Q5F QR QI

2QI QR
G , ~8!

whereQR andQI areN3N matrices andQ5QR1 iQI is a
unitary matrix.S has the structure

S5FS1 P

0 S2
G , ~9!

whereS1 is upper triangular,S2 is lower triangular, andS2

5S̃1
21. Substituting the decompositionT5Q̃S in Eq. ~6!, we

find

ṠS 212L5QGQ̃, Q̇Q̃5L, ~10!

whereL is an antisymmetric matrix with the block structu

L5F LR LI

2LI LR
G . ~11!

Here LR is antisymmetric,LI is symmetric, andL5LR
1 iL I is anti-Hermitian.

It can be shown that the Lyapunov exponentsl i are equal
to L i /t in the limit t→`, whereL i5 ln(Si i ). Because of the
symplectic structure ofS, L i5 ln(Si i ), L i 1N52L i , with i
51, . . . ,N. The first equation in Eq.~10! can be disas-
sembled into two parts: its diagonal elements describe
time evolution ofL i in terms of (QGQ̃) i i , whereas the res
provide algebraic expressions forLR,I in terms of
(QGQ̃) i j ,iÞ j ~apart from an inessential differential equ
tion for P!. Using the block structure ofQ andL, the equa-
tion can be written asQ̇Q†5L. Therefore, the reduced tan
gent dynamics of a Hamiltonian system~that has symplectic
symmetry! is given by the equations

L̇ i5~QGQ̃! i i , 1< i<N, Q̇Q†5L. ~12!

These constituteN21N equations, withN equations for the
Lyapunov exponents andN2 equations forN2 angles param-
etrizing theN-dimensional unitary matrix Q. This should b
compared with the 2N21N equations for a general syste
when theQR method is used. In the latter case, there areN
equations for Lyapunov exponents and 2N(2N21)/2 equa-
tions for the angles parametrizing a 2N-dimensional or-
of

e

thogonal matrix. In the standard method one has (2N)2

equations for determining the full Lyapunov spectrum. The
are the 2N copies of 2N tangent map equations in Eq.~3!. In
all the methods, one has to further add the 2N equations for
the trajectory itself, to what has been listed before.

For Hamiltonians of the formH(p,q)5p2/21V(q,t), the
right-hand side in Eq.~12! takes on a simple form. One ca
show that for (i , j 51, . . . ,N),

~QGQ̃! i i 52~QIDQ̃R! i i , ~13!

~LR! i j 522~QIDQ̃R! i j , i . j ,

~LI ! i i 52~QRDQ̃R! i i , ~14!

and

~LI ! i j 52~QRDQ̃R! i j , iÞ j .

Here, theN-dimensional matrixD is defined by

D5
~ I 2¹q¹qV!

2
. ~15!

Any N-dimensional unitary matrix can be expressed a
product of a phase factor and an SU(N) matrix. ForN52,
the unitary 232 matrixQ can be conveniently parametrize
by the exponential form exp(iaI)exp(ics•n̂) where n̂
5(sinu cosf,sinu sinf,cosf) is a unit vector anda,c,u,
andf are real angles@5#. Then, the reduced tangent dynam
ics in Eq. ~12! reduces to coupled equations for the tim
evolution of the two positive Lyapunov exponents and t
four angles.

For N53, we use the fact that an arbitrary SU(3) matr
U can be written in the following completely disentangle
form @6#

U5ei A3bl8e2 ia3l3e2 ia2l2e2 igl3e2 inl4eig8l3eia28l2eia38l3,
~16!

wherel i are the following Gellmann matrices that are trac
less and Hermitian:

l15F 0 1 0

1 0 0

0 0 0
G , l25F 0 2 i 0

i 0 0

0 0 0
G ,

l35F 1 0 0

0 21 0

0 0 0
G , ~17!

l45F 0 0 1

0 0 0

1 0 0
G , and l85

1

A3 F 1 0 0

0 1 0

0 0 22
G .

ThenQ can be written as

Q5e2 iaIU. ~18!

The explicit matrix elements ofQ are given by
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Q115ei (a381g82a32g2a2b)cosa2 cosa28 cosn

1ei (a382g82a31g2a2b)sina2 sina28 ,

Q125ei (g82a382a32g2a2b)cosa2 sina28 cosn

2ei (g2a32a382g82a2b)sina2 cosa28 ,

Q1352 ie2 i (a31g1a1b)cosa2 sinn,

Q215ei (a381g81a32g2a2b)sina2 cosa28 cosn

2ei (a382g81a31g2a2b)cosa2 sina28 ,

Q225ei (a32g2a381g82a2b)sina2 sina28 cosn

1ei (a31g2a382g82a2b)cosa2 cosa28 ,

Q2352 ie2 i (a32g2a2b)sina2 sinn,

Q3152 iei (a381g82a12b)cosa28 sinn,

Q3252 ie2 i (a382g81a22b)sina28 sinn,

Q335e2 i (a22b)cosn. ~19!

The matricesQR and QI , which are the real and imagi
nary parts ofQ, can be found from these expressions. T
right-hand sides of the reduced tangent dynamics equat
in Eq. ~12! can then be found using Eqs.~13!, ~14!, and~19!.

Now from Eq.~18!, we get

Q̇Q†52 i ȧI 1U̇U†, ~20!

sinceU is unitary. U̇U† is the Maurer-Carton form for the
SU(3) group and its explicit form can be derived starti
from Eq. ~16! and using the transformation properties ofl i
under the SU(3) rotations generated by them. It can be w
ten as

U̇U†5 i(
i 51

8

bil i , ~21!

wherebi are functions of the anglesb,a3 ,a2 ,g,n,g8,a38 ,
and a28 and their derivatives ~linear in the latter!,
l1 ,l2 ,l3 ,l4, andl8 are given in Eq.~16! and

l55F 0 0 2 i

0 0 0

i 0 0
G , l65F 0 0 0

0 0 1

0 1 0
G ,

l75F 0 0 0

0 0 2 i

0 i 0
G . ~22!

The evolution equations for the nine angles are then
rived from the equationQ̇Q†5L. Thus we have obtained th
coupled equations for the time evolution of the three posit
Lyapunov exponents and the nine angles, from the redu
e
ns

it-

e-

e
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tangent dynamics in Eqs.~12!–~15!, and using the represen
tation for Q given by Eqs.~16!–~18!.

For N.3 also, a completely disentangled form ofQ can
be used in principle, though the evolution equations for
Lyapunov exponents and the angles become more and m
complicated with increasingN.

III. COMPARISON OF THE REDUCED TANGENT
FORMULATION WITH THE STANDARD ALGORITHM

In this section we compare in detail the Lyapunov spec
computed using the reduced tangent dynamics approach
the standard method. For this purpose, we work with
following Hamiltonian systems withN52 or 3.

~1! Two-dimensional coupled quartic oscillator (N52):

H5
p1

2

2
1

p2
2

2
1q1

41q2
41aq1

2q2
2 , ~23!

where a is a parameter. The system is known to be in
grable for a50,2, and 6. We have performed numeric
computations fora56 and 8.

~2! Partovi Hamiltonian (N52):

TABLE I. Comparison of the two methods for some Ham
tonian systems withN52 and 3. The values given in parenthes
correspond to the standard method.

System and Positive Lyapunov
integration Initial spectrum and
time ~T! condition CPU time~t!

Coupled q150.8 0.1820~0.1738!
quartic oscr. q250.5 0.0001~ 0.0001!
(N52) p151.0
(T5105) p251.3 t52410(856)
Partovi q150.0
Hamiltonian q250.0 0.311 40~0.319 80!
f 50 p150.0 0.000 04~0.000 00!
(N52) p25A2
T583105 E51.00 t522 895(12 333)
Partovi q150.0
Hamiltonian q250.0 0.1731~0.1181!
f 50.5 p150.0 0.0061~0.0031!
(N52) p25A2
T5106 t539 360(28 109)

q152.4
q251.4 0.6582~0.6468!

Yang-Mills q350.4 0.2012~0.1959!
system p150.4 0.0006~0.0001!
(N53) p251.4
T553104 p352.4 t536 791(3607)

E510.202
q151.0
q250.5 0.3909~0.3833!

Yang-Mills q350.25 0.1189~0.1150!
system p151.2 0.000 18~0.000 12!
(N53) p250.6
T5105 p350.3 t520 471(1936)

E51.1091
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TABLE II. Comparison of convergence of the maximal Lyapunov exponent for the Partovi Hamilto
with f 50.0, corresponding to three initial conditions.

Initial conditions used for both the methods

q150.10 p150.00 q150.20 p151.00 q150.40 p152.00
Time q250.60 p250.41 q250.20 p250.25 q251.00 p250.40

Standard Reduced Standard Reduced Standard Reduc
method dynamics method dynamics method dynamic

55 000 0.2286(n) 0.2473(y) 0.2895(y) 0.2852(y) 0.2515(y) 0.2587(y)
60 000 0.2231(n) 0.2460(y) 0.2903(y) 0.2840(y) 0.2524(y) 0.2594(y)
65 000 0.2256(n) 0.2465(y) 0.2911(y) 0.2851(y) 0.2529(y) 0.2586(y)
70 000 0.2112(y) 0.2467(y) 0.2917(y) 0.2846(y) 0.2511(y) 0.2586(y)
75 000 0.2092(y) 0.2480(y) 0.2918(y) 0.2853(y) 0.2522(y) 0.2573(y)
80 000 0.2132(y) 0.2501(y) 0.2923(y) 0.2855(y) 0.2523(y) 0.2558(y)
85 000 0.2122(y) 0.2507(y) 0.2921(y) 0.2868(y) 0.2482(y) 0.2569(y)
90 000 0.2063(y) 0.2479(y) 0.2929(y) 0.2876(y) 0.2458(y) 0.2546(y)
95 000 0.2057(y) 0.2428(y) 0.2933(y) 0.2860(y) 0.2468(y) 0.2538(y)
100 000 0.2076(y) 0.2442(y) 0.2928(y) 0.2866(y) 0.2436(y) 0.2518(y)

CPU time
~in s! 1065.28 1748.0 1140.34 1837.17 2058.11 3648.30
W
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.

size
ce
C
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also
H5
p1

2

2
1

p2
2

2
2

~q12q2!2

2
14~q1

41q2
4!1 f q2 cost,

~24!

wheref represents the strength of the external coupling.
have considered bothf 50 and f 50.5 as in Ref.@5#.

~3! Yang-Mills System (N53):

H5
p1

2

2
1

p2
2

2
1

p3
2

2
1

~q1
2q2

21q2
2q3

21q3
2q1

2!

2
. ~25!
e

This is the Hamiltonian obtained upon reducing the Yan
Mills gauge field theory~of fundamental importance in high
energy physics! @7# to a dynamical system, by considerin
spatially homogeneous fields and a simple ansatz for
Yang-Mills gauge fields@8#. It has been extensively exam
ined in the literature for studying chaos in gauge theories

For all the systems, we have used a variable step-
Runge-Kutta routine for integration with an error toleran
e;1028. All the computations were performed on a DE
Alpha based workstation running OpenVMS. The time
integration ranged fromT550 000 to T5106 depending
upon the convergence of the Lyapunov exponents. We
nian

ed
s

TABLE III. Comparison of convergence of the maximal Lyapunov exponent for the Partovi Hamilto
with f 50.5, corresponding to three initial conditions.

Initial conditions used for both the methods

q150.10 p150.00 q150.20 p151.00 q150.40 p152.00
Time q250.60 p250.41 q250.20 p250.25 q251.00 p250.40

Standard Reduced Standard Reduced Standard Reduc
method dynamics method dynamics method dynamic

165 000 0.2090(y) 0.1725(n) 0.1861(n) 0.2252(y) 0.1462(n) 0.1808(n)
180 000 0.2081(y) 0.1713(n) 0.1922(n) 0.2262(y) 0.1525(n) 0.1770(y)
195 000 0.2056(y) 0.1742(n) 0.1975(y) 0.2251(y) 0.1490(n) 0.1748(y)
210 000 0.2057(y) 0.1789(n) 0.2019(y) 0.2223(y) 0.1507(n) 0.1780(y)
225 000 0.2031(y) 0.1847(y) 0.2026(y) 0.2224(y) 0.1569(n) 0.1760(y)
240 000 0.2023(y) 0.1876(y) 0.2028(y) 0.2225(y) 0.1630(n) 0.1685(y)
255 000 0.2027(y) 0.1887(y) 0.2060(y) 0.2230(y) 0.1686(y) 0.1680(y)
270 000 0.2028(y) 0.1883(y) 0.2063(y) 0.2232(y) 0.1730(y) 0.1702(y)
285 000 0.2032(y) 0.1912(y) 0.2069(y) 0.2242(y) 0.1770(y) 0.1741(y)
300 000 0.1993(y) 0.1912(y) 0.2047(y) 0.2256(y) 0.1764(y) 0.1772(y)

CPU time
~in s! 6151.84 11 225.61 5813.22 9896.64 6005.35 12 441.7
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TABLE IV. Comparison of convergence of the maximal Lyapunov exponent in the Yang-Mills sy
corresponding to three initial conditions.

Initial conditions used for both the methods

q150.50 p150.50 q150.90 p150.30 q151.20 p151.40
Time q250.40 p250.40 q250.60 p250.60 q250.34 p250.34

q350.20 p350.20 q350.30 p350.90 q350.64 p350.64

Standard Reduced Standard Reduced Standard Reduc
method dynamics method dynamics method dynamic

6000 0.2872(n) 0.2790(n) 0.3601(y) 0.3743(n) 0.4320(y) 0.4406(n)
10 000 0.2798(y) 0.2721(y) 0.3533(y) 0.3681(y) 0.4269(y) 0.4469(n)
14 000 0.2752(y) 0.2715(y) 0.3577(y) 0.3681(y) 0.4336(y) 0.4446(n)
18 000 0.2729(y) 0.2708(y) 0.3607(y) 0.3688(y) 0.4369(y) 0.4437(n)
22 000 0.2755(y) 0.2612(y) 0.3637(y) 0.3636(y) 0.4370(y) 0.4373(y)
26 000 0.2766(y) 0.2653(y) 0.3617(y) 0.3633(y) 0.4379(y) 0.4204(y)
30 000 0.2734(y) 0.2592(y) 0.3545(y) 0.3634(y) 0.4294(y) 0.4236(y)
34 000 0.2730(y) 0.2586(y) 0.3584(y) 0.3653(y) 0.4263(y) 0.4242(y)
38 000 0.2726(y) 0.2604(y) 0.3590(y) 0.3635(y) 0.4199(y) 0.4222(y)
42 000 0.2732(y) 0.2622(y) 0.3608(y) 0.3634(y) 0.4215(y) 0.4185(y)
46 000 0.2716(y) 0.2646(y) 0.3594(y) 0.3404(y) 0.4195(y) 0.4209(y)
50 000 0.2661(y) 0.2659(y) 0.3612(y) 0.3442(y) 0.4168(y) 0.4217(y)

CPU time
~in s! 602.33 10 354.09 731.44 40 478.47 1068.23 20 205.2
m
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mics
noted the CPU time taken for each case for both algorith
This is the actual time taken by the CPU to accomplish
specific process~independent of the other processes runn
in the system!. The details of the comparison of the positiv
Lyapunov spectra computed using the two methods are s
marized in Table I. The two methods yield essentially t
same Lyapunov spectra. We will comment on the differen
in one case, later.

We make a detailed comparison between the converge
properties of the Lyapunov exponents computed using
two methods by taking up five initial conditions each cor
sponding tof 50.0 and f 50.5 for the Partovi system (N
52) and 10 initial conditions for the Yang-Mills system
(N53). The results for the maximal Lyapunov expone
corresponding to three initial conditions for each of these
displayed in Tables. II–IV. Our criterion of the convergen
of the Lyapunov exponent is that the Lyapunov function v
ies within 5% for a ‘‘sufficiently long interval of time.’’ The
latter will be clear from the context. This is the reason for t
fact that the time of integration depends upon the system
even on the parameters and is indicated in the tables.

The lettery(n) in the parentheses to the right of the ma
mal Lyapunov exponent indicates that the value of the ex
nent at that time of integration differs by less~more! than 5%
of the ‘‘converged Lyapunov exponent.’’ The latter is tak
to be the average value of the exponent betweent540 000
and 50 000 for the Yang-Mills system, betweent580 000
and 100 000 for the Partovi system withf 50.0, and between
t5240 000 and 300 000 for the Partovi system withf 50.5.
The displayed results are representative and the converg
properties of other exponents and other initial conditions
no different.

In most cases, both the values of the exponents and
convergence rates obtained by the two methods are com
s.
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rable. The Partovi Hamiltonian has negative terms in it. T
leads to a larger phase space and a greater possibility fo
propogation of errors. It is perhaps due to this that the ma
mal Lyapunov exponent obtained by the two methods, c
siderably differ in one case~refer to the third example in
Table. I!. With our data it is not possible to say whic
method is more reliable. However the CPU time is higher
a factor of 1.5 to 2 on an average with the reduced formu
tion for this system withN52. In Fig. 1, we give the maxi-
mal Lyapunov exponent computed using the two method
a function of time, corresponding to a typical initial cond
tion, and forf 50.5.

The convergence of the Lyapunov exponent in the Ya
Mills system (N53) seems to be much faster. The maxim
Lyapunov exponent computed using the standard met

FIG. 1. Plot of the maximal Lyapunov exponent for the Parto
Hamiltonian with f 50.5 and the initial conditionsq150.1, q2

50.6, p150.0, andp250.41. The lines with and without the ‘‘x’’
marks correspond to the standard and the reduced tangent dyna
algorithms, respectively.
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converges to within 5% after t58000 for all the 10 initial
conditions we have considered, whereas this is so for 7 c
with the reduced formulation. The values of the expone
computed using the two methods are more or less the sa
This is possibly due to the positive definiteness of the Ham
tonian, resulting in a restricted phase space. However,
reduced formulation is far less efficient for the system w

FIG. 2. Plot of the maximal Lyapunov exponent for the Yan
Mills system with E50.3192 and the initial conditionsq150.6,
q250.4, q150.2, p150.6, p250.4, andp350.2. The lines with
and without the ‘‘x’’ marks correspond to the standard and
reduced tangent dynamics algorithms, respectively.
n

-

og
n-
es
ts
e.

l-
he

N53. The average CPU time corresponding to the redu
formulation is about 15–40 times the CPU time correspo
ing to the standard method. In Fig. 2, we give the maxim
Lyapunov exponent as a function of time computed using
two methods, corresponding to a typical initial condition
the Yang-Mills system.

We have subjected the new algorithm to other tests.
instance, for the Yang-Mills system, the trajectories cor
sponding to the initial conditionsq15q25q3 and p15p2
5p3 are regular and all the Lyapunov exponents are
pected to be zero. Similarly the coupled quartic oscilla
system is integrable whena56. The computed values of a
the Lyapunov exponents using reduced tangent dynamics
indeed zero in these cases.

The reduced tangent dynamics approach does not req
renormalization and reorthogonalization as in the stand
method. It also uses a lesser number of equations as it in
porates theQR method and also the symplectic structure
Hamiltonian dynamics. However, the equations for the t
gent flow are highly nonlinear and involved in this formul
tion. The degree of complexity only increases withN and
this is what makes it less efficient.
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